

## **OXFORD CAMBRIDGE AND RSA EXAMINATIONS**

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4721

Core Mathematics 1

Monday

**16 JANUARY 2006** 

Morning

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

## **INSTRUCTIONS TO CANDIDATES**

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

## **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.



**WARNING** 

You are not allowed to use a calculator in this paper.

This question paper consists of 3 printed pages and 1 blank page.

1 Solve the equations

(i) 
$$x^{\frac{1}{3}} = 2$$
, [1]

(ii) 
$$10^t = 1$$
, [1]

(iii) 
$$(y^{-2})^2 = \frac{1}{81}$$
. [2]

2 (i) Simplify 
$$(3x+1)^2 - 2(2x-3)^2$$
. [3]

(ii) Find the coefficient of  $x^3$  in the expansion of

$$(2x^3 - 3x^2 + 4x - 3)(x^2 - 2x + 1).$$
 [2]

3 Given that  $y = 3x^5 - \sqrt{x} + 15$ , find

(i) 
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
, [3]

(ii) 
$$\frac{d^2y}{dx^2}$$
. [2]

4 (i) Sketch the curve 
$$y = \frac{1}{x^2}$$
. [2]

(ii) Hence sketch the curve 
$$y = \frac{1}{(x-3)^2}$$
. [2]

(iii) Describe fully a transformation that transforms the curve 
$$y = \frac{1}{x^2}$$
 to the curve  $y = \frac{2}{x^2}$ . [3]

5 (i) Express 
$$x^2 + 3x$$
 in the form  $(x + a)^2 + b$ . [2]

(ii) Express 
$$y^2 - 4y - \frac{11}{4}$$
 in the form  $(y+p)^2 + q$ . [2]

A circle has equation  $x^2 + y^2 + 3x - 4y - \frac{11}{4} = 0$ .

6 (i) Find the coordinates of the stationary points on the curve 
$$y = x^3 - 3x^2 + 4$$
. [6]

(iii) For what values of x does 
$$x^3 - 3x^2 + 4$$
 increase as x increases? [2]

- 7 (i) Solve the equation  $x^2 8x + 11 = 0$ , giving your answers in simplified surd form. [4]
  - (ii) Hence sketch the curve  $y = x^2 8x + 11$ , labelling the points where the curve crosses the axes. [3]
  - (iii) Solve the equation  $y 8y^{\frac{1}{2}} + 11 = 0$ , giving your answers in the form  $p \pm q\sqrt{5}$ . [4]
- 8 (i) Given that  $y = x^2 5x + 15$  and 5x y = 10, show that  $x^2 10x + 25 = 0$ . [2]
  - (ii) Find the discriminant of  $x^2 10x + 25$ . [1]
  - (iii) What can you deduce from the answer to part (ii) about the line 5x y = 10 and the curve  $y = x^2 5x + 15$ ?
  - (iv) Solve the simultaneous equations

$$y = x^2 - 5x + 15$$
 and  $5x - y = 10$ . [3]

- (v) Hence, or otherwise, find the equation of the normal to the curve  $y = x^2 5x + 15$  at the point (5, 15), giving your answer in the form ax + by = c, where a, b and c are integers. [4]
- **9** The points A, B and C have coordinates (5, 1), (p, 7) and (8, 2) respectively.
  - (i) Given that the distance between points A and B is twice the distance between points A and C, calculate the possible values of p. [7]
  - (ii) Given also that the line passing through A and B has equation y = 3x 14, find the coordinates of the mid-point of AB. [4]

| 1 | (i)      | 1                                                         |            |          | (allow embedded values throughout                                  |
|---|----------|-----------------------------------------------------------|------------|----------|--------------------------------------------------------------------|
| 1 | (1)      | $x^{\frac{1}{3}}=2$                                       |            |          | question 1)                                                        |
|   |          | x = 8                                                     | B1         | 1        | 8                                                                  |
|   | (ii)     | $10^{l} = 1$                                              |            |          |                                                                    |
|   |          | t = 0                                                     | B1         | 1        | 0                                                                  |
|   | (iii)    | $\left(y^{-2}\right)^2 = \frac{1}{81}$                    |            |          |                                                                    |
|   | }        |                                                           |            |          |                                                                    |
|   |          | $y^{-4} = \frac{1}{81}$                                   |            |          |                                                                    |
|   |          | $y = \pm 3$                                               | B1         |          | y = 3                                                              |
|   |          |                                                           | B1         | 2        | y = -3                                                             |
| 2 | (i)      | $(3x+1)^2-2(2x-3)^2$                                      | M1         |          | Square to get at least one 3 or 4 term quadratic                   |
|   |          | $= (9x^2 + 6x + 1) - 2(4x^2 - 12x + 9)$                   | A1         |          | $9x^2 + 6x + 1$ or $4x^2 - 12x + 9$ soi                            |
|   |          | $=x^2+30x-17$                                             | A1         | 3        | $x^2 + 30x - 17$                                                   |
|   | (ii)     | $2x^3 + 6x^3 + 4x^3 = 12x^3$                              | B1         |          | $2 \text{ of } 2x^3, 6x^3, 4x^3 \text{ soi}$                       |
|   |          |                                                           |            |          | N.B. www for these terms, must be positive                         |
|   |          |                                                           | <b>D</b> . |          | 10 10 3                                                            |
|   |          | 12                                                        | B1         | 2        | 12 or $12 x^3$                                                     |
| 3 | (i)      | $\frac{dy}{dx} = 15x^4 - \frac{1}{2}x^{-\frac{1}{2}}$     | B1         |          | $15x^4$                                                            |
|   |          | $\frac{1}{dx} = 13x - \frac{1}{2}x$                       | В1         |          | $k\alpha^{-\frac{1}{2}}$                                           |
|   |          |                                                           | B1         | 3        | $cx^4 - \frac{1}{2}x^{-\frac{1}{2}}$ only                          |
|   |          |                                                           |            | ļ        | $\frac{cx^2-x^2}{2}$ only                                          |
|   | (ii)     | $\frac{d^2y}{dx^2} = 60x^3 + \frac{1}{4}x^{-\frac{1}{2}}$ | M1         |          | Attempt to differentiate their 2 term $\frac{dy}{dx}$ and          |
|   |          | $dx^2$ 4                                                  |            |          | get one correctly differentiated term                              |
|   |          | ,                                                         | A1         | 2        | 4                                                                  |
|   | İ        |                                                           |            |          | $60x^3 + \frac{1}{4}x^{-\frac{1}{2}}$                              |
| 4 | (i)      |                                                           | B1         |          | Correct curve in one quadrant                                      |
|   |          |                                                           | B1         | 2        | Completely correct                                                 |
|   |          | /   \                                                     | <b>D</b> 1 | ٠.       | Completely contest                                                 |
|   |          |                                                           |            |          |                                                                    |
|   | (ii)     | ľll                                                       | MI         |          | Translate (i) horizontally                                         |
|   |          |                                                           |            |          |                                                                    |
|   |          | / \                                                       | A1√        | 2        | Translates all of their (i) $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ |
|   |          |                                                           |            |          | (-)                                                                |
|   |          | 3                                                         | D.         | ļ        | 3 must be labelled or stated                                       |
|   | (iii)    | (One-way) stretch, sf 2, parallel to                      | B1<br>B1   |          | Stretch (Scale) factor 2                                           |
|   |          | the y-axis                                                | B1         | 3        | Parallel to y-axis o.e.                                            |
|   |          |                                                           |            |          | ·                                                                  |
|   |          |                                                           |            |          | SR<br>Street-la P1                                                 |
|   |          |                                                           |            |          | Stretch B1<br>Sf $\sqrt{2}$ parallel to x-axis B2                  |
|   | <u> </u> |                                                           | <u> </u>   | <u> </u> | Sf $\sqrt{2}$ parallel to x-axis B2                                |

| 5 | (i)   | $x^2 + 3x = \left(x + \frac{3}{2}\right)^2 - \frac{9}{4}$ | B1          | 1 | $a = \frac{3}{2}$                                                                  |
|---|-------|-----------------------------------------------------------|-------------|---|------------------------------------------------------------------------------------|
|   |       |                                                           | В1          | 2 | $b = -\frac{9}{4}$ o.e.                                                            |
|   | (ii)  | $y^2 - 4y - \frac{11}{4} = (y - 2)^2 - \frac{27}{4}$      | В1          |   | p = -2                                                                             |
|   |       | 4 4                                                       | i i         |   | $q = -\frac{27}{4}$ o.e.                                                           |
|   | (iii) | Centre $\left(-\frac{3}{2},2\right)$                      | В1√         | 1 | $\left(-\frac{3}{2},2\right)$                                                      |
|   |       |                                                           |             |   | N.B. If question is restarted in this part, ft from part (iii) working only        |
|   | (iv)  | $Radius = \sqrt{\frac{27}{4} + \frac{9}{4}}$              | Ml          |   | $\sqrt{-their'b'-their'q'}$ or use $\sqrt{(f^2+g^2-c)}$                            |
|   |       | $= \sqrt{9}$ $= 3$                                        | A1          | 2 | 3 (±3 scores A0)                                                                   |
|   | (8)   | _                                                         | AI          | 2 | ,                                                                                  |
| 6 | (i)   | $y = x^3 - 3x^2 + 4$                                      |             |   | $3x^2-6x$                                                                          |
|   |       | $dy$ $2^{-2}$ $C$                                         | B1          |   | 1 term correct                                                                     |
|   |       | $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x$             | B1          |   | Completely correct                                                                 |
|   |       | $3x^2 - 6x = 0$                                           | Ml          |   | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$                                              |
|   |       | 3x(x-2)=0                                                 | M1          |   | Correct method to solve quadratic                                                  |
|   |       | x = 0 $x = 2$                                             | A1          |   | x = 0, 2                                                                           |
|   |       | y = 4  y = 0                                              | <b>A</b> 1√ | 6 | y = 4, 0                                                                           |
|   |       |                                                           |             |   | SR one correct (x,y) pair www B1                                                   |
|   | (ii)  | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 6$           | M1          |   | Correct method to find nature of stationary points (can be a sketch)               |
|   |       | x = 0  y'' = -6  -ve max                                  | B1          |   | x = 0 max                                                                          |
|   |       | x = 2 $y'' = 6$ + ve min                                  | B1          | 3 | x = 2 min                                                                          |
|   |       | •                                                         |             |   | (N.B. If no method shown but both min and max correctly stated, award all 3 marks) |
|   | (iii) | Increasing                                                | M1          |   | Any inequality (or inequalities) involving both their x values from part (i)       |
|   |       | x < 0 $x > 2$                                             | A1          | 2 | Allow $x \le 0$ $x \ge 2$                                                          |

| 7 | (i)   | $8+\sqrt{64-44}$                          | M1  |   | Correct use of formula                                                 |
|---|-------|-------------------------------------------|-----|---|------------------------------------------------------------------------|
|   |       | $x = \frac{8 \pm \sqrt{64 - 44}}{2}$      |     |   |                                                                        |
|   |       | $=\frac{8\pm\sqrt{20}}{2}$                | A1  |   | $\frac{8\pm\sqrt{20}}{2}$ aef                                          |
|   |       | 2                                         | B1  |   | $\sqrt{20} = 2\sqrt{5}$ soi                                            |
|   |       | $=4\pm\sqrt{5}$                           | A1  | 4 | $4\pm\sqrt{5}$                                                         |
|   |       |                                           |     |   | Alternative method $(x-4)^2 - 16 + 11 = 0  M1$                         |
|   |       |                                           |     |   | 1 ` ′                                                                  |
|   |       |                                           |     |   | $\left(x-4\right)^2 = 5 \qquad \qquad \text{A1}$                       |
|   |       |                                           |     |   | $x = 4 + \sqrt{5}$ A1                                                  |
|   |       |                                           |     |   | or $4-\sqrt{5}$ A1                                                     |
|   | (ii)  | 11 \( \)                                  | B1  |   | +ve parabola                                                           |
|   |       |                                           | В1√ |   | Root(s) in correct places                                              |
|   |       | 4-5^0.5 4+5^0.5                           | B1  | 3 | Completely correct curve with roots and (0, 11) labelled or referenced |
|   | (iii) | 2 ( /5\2                                  | M1  |   | $y = x^2$ soi                                                          |
|   | ()    | $y = x^2 = \left(4 \pm \sqrt{5}\right)^2$ | M1  |   | Attempt to square at least one answer from                             |
|   |       | $=16+5\pm 8\sqrt{5}$                      | A1√ |   | part (i)<br>Correct evaluation of $(a + b\sqrt{c})^2$ $(a,b,c \neq 0)$ |
|   |       | 10.01040                                  |     |   |                                                                        |
|   |       | $=21\pm8\sqrt{5}$                         | A1  | 4 | 21±8√5                                                                 |
|   |       |                                           |     |   |                                                                        |

| 8 | (i)   | $y = x^2 - 5x + 15$                 | M1  |   | Attempt to eliminate y                                                   |
|---|-------|-------------------------------------|-----|---|--------------------------------------------------------------------------|
|   |       | y = 5x - 10                         |     |   |                                                                          |
|   |       | $x^2 - 5x + 15 = 5x - 10$           |     |   | $x^2 - 10x + 25 = 0$ AG                                                  |
|   |       | $x^2 - 10x + 25 = 0$                | A1  | 2 | Obtained with no wrong working seen                                      |
|   | (ii)  | $b^2 - 4ac = 100 - 100$             |     |   | <u> </u>                                                                 |
|   |       | = 0                                 | B1  | 1 | 0 Do not allow $\sqrt{(b^2 - 4ac)}$                                      |
|   | (iii) | Line is a tangent to the curve      | B1√ | 1 | Tangent or 'touches'                                                     |
|   |       |                                     |     |   | N.B. Strict ft from their discriminant                                   |
|   | (iv)  | $x^2 - 10x + 25 = 0$                | Ml  |   | Correct method to solve 3 term quadratic                                 |
|   |       | $(x-5)^2 = 0$ $x = 5  y = 15$       |     |   |                                                                          |
|   |       | x = 5  y = 15                       | A1  |   | x = 5                                                                    |
|   |       |                                     | A1  | 3 | y = 15                                                                   |
|   | (v)   | Gradient of tangent = 5             | B1  |   | Gradient of tangent = 5                                                  |
|   |       | Gradient of normal = $-\frac{1}{5}$ | ві√ |   | Gradient of normal = $-\frac{1}{5}$                                      |
|   |       | ,                                   |     |   | ,                                                                        |
|   |       | $y - 15 = -\frac{1}{5}(x - 5)$      | M1  |   | Correct equation of straight line, any gradient, passing through (5, 15) |
|   |       | x + 5y = 80                         | A1  | 4 | x + 5y = 80                                                              |
|   |       |                                     |     |   |                                                                          |

| 9 | (i)  | Length AC = $\sqrt{(8-5)^2 + (2-1)^2}$                            | M1          |   | Uses $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$                                                                      |
|---|------|-------------------------------------------------------------------|-------------|---|------------------------------------------------------------------------------------------------------------|
|   |      | $=\sqrt{3^2+1^2}$                                                 |             |   |                                                                                                            |
|   |      | $=\sqrt{10}$                                                      | A1          |   | $\sqrt{10}$ (± $\sqrt{10}$ scores A0)                                                                      |
|   |      | Length AB = $\sqrt{(p-5)^2 + (7-1)^2}$<br>= $\sqrt{(p-5)^2 + 36}$ | A1          |   | $\sqrt{(p-5)^2+(7-1)^2}$                                                                                   |
|   |      | $\sqrt{(p-5)^2 + 36} = 2\sqrt{10}$                                | M1          |   | AB = 2AC (with algebraic expression) used                                                                  |
|   |      | $p^{2}-10p+25+36=40$ $p^{2}-10p+21=0$ $(p-7)(p-3)=0$              | M1          |   | Obtains 3 term quadratic = 0 suitable for solving or $(p-5)^2 = 4$ _                                       |
|   |      | p=7,3                                                             | A1<br>A1    | 7 | $   \begin{array}{c}     p = 7 \\     p = 3   \end{array} $                                                |
|   |      |                                                                   |             |   | SR If no working seen, and one correct value found, award B2 in place of the final 4 marks in part (i)     |
|   | (ii) | 7 = 3x - 14 $x = 7$                                               | M1<br>A1    |   | Correct method to find $x$<br>x = 7                                                                        |
|   |      | (5, 1) (7, 7)                                                     | M1          |   | Use $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$                                                |
|   |      | Mid-point (6, 4)                                                  | <b>A</b> 1√ | 4 | (6, 4) or correct midpoint for their AB                                                                    |
|   |      |                                                                   |             |   | Alternative method  y coordinate of midpoint = 4 M1 A1  sub 4 into equation of line M1  obtains $x = 6$ A1 |